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Abstract We develop a resonance theory to describe the evolution of open systems with
time-dependent dynamics. Our approach is based on piecewise constant Hamiltonians: we
represent the evolution on each constant bit using a recently developed dynamical reso-
nance theory, and we piece them together to obtain the total evolution. The initial state
corresponding to one time-interval with constant Hamiltonian is the final state of the sys-
tem corresponding to the interval before. This results in a non-Markovian dynamics. We
find a representation of the dynamics in terms of resonance energies and resonance states
associated to the Hamiltonians, valid for all times t ≥ 0 and for small (but fixed) interaction
strengths. The representation has the form of a path integral over resonances. We present ap-
plications to a spin-fermion system, where the energy levels of the spin may undergo rather
arbitrary crossings in the course of time. In particular, we find the probability for transition
between ground- and excited state at all times.
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1 Introduction and Outline of Main Results

We study the evolution of an open quantum system S in contact with a quantum heat reser-
voir R. The Hamiltonian of S, as well as the interaction between the two systems is time-
dependent. Our goal is to derive the form of the reduced dynamics of S for all times t ≥ 0
and for small (but fixed) values of the coupling constant governing the strength of the in-
teraction. An analysis of this kind for time-independent dynamics has been carried out in
[19–21]. The approach adopted in the present work is based on the methods developed in
these references, which in turn are extensions of a recent theory of quantum resonances for
the analysis of large-time asymptotics of open quantum systems [7, 11, 14, 15, 17, 18] (see
also the references in these works for further literature).

Within the context of the present paper, the long-time asymptotics has been examined for
time-dependent dynamics in the following settings: in [12] for interaction operators having
some limit as t → ∞, in [2, 12] for periodic interactions (using algebraic scattering theory
and Floquet theory, respectively), in [9, 10] for piecewise constant dynamics and Markovian
reservoirs (repeated interaction systems) and in [1, 3] for adiabatic dynamics. All these
works are concerned with the approach of the system to an asymptotic state and with the
thermodynamic properties of the latter. In contrast, in the present paper, we examine the
dynamics of the open system for all times and for rather arbitrary time-dependences of the
dynamics (not necessarily leading to an asymptotic state of the system).

We develop a resonance theory for Hamiltonians of the form

H(t) = HS(t) + HR + λ(t)v(t), (1)

where HS(t) and HR are the Hamiltonians of S and R respectively, λ(t) is a coupling con-
stant, and v(t) is an interaction operator. We base our approach on piecewise constant Hamil-
tonians of the form (1), meaning that the Heisenberg dynamics of an observable A is given
by

αN(A) = eit1H 1 · · · eitN HN

Ae−itN HN · · · e−it1H 1
, (2)

where tj > 0 and

Hj = H
j

S + HR + λjv
j . (3)

The dynamics (2) describes sudden changes in parameters of S and the interaction, and it has
its own interest. A piecewise constant dynamics may also be viewed as an approximation
of a continuous dynamics, in the appropriate limit tj → 0 and N → ∞. We illustrate both
these settings on concrete models in Sect. 1.2.

The space of pure states HS of the open system S is a finite-dimensional Hilbert space,
and its Hamiltonian H

j

S is an arbitrary self-adjoint operator on HS. We model the reservoir
by a spatially infinitely extended (R3) gas of free Fermions in equilibrium at temperature
T > 0. The Hamiltonian of R is given by

HR =
∫

R3
|k|2a∗(k)a(k)d3k, (4)

where the a(k) and a∗(k) are fermionic annihilation and creation operators, satisfying the
standard canonical anti-commutation relations {a(k), a∗(l)} = δ(k − l), see e.g. [8]. We un-
derstand that in (4), and for all other quantities involving R, the thermodynamic (infinite
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volume, continuous mode) limit has to be taken (this is the so called Araki-Wyss represen-
tation [5], see also Sect. A.1 for further details). The equilibrium state of R is the quasi-free
state determined by the two-point function

ωR,β

(
a∗(k)a(l)

) = δ(k − l)

eβ|k|2 + 1
, (5)

where β = 1/T , see e.g. [8].
The interaction operator is a sum of terms of the form

vj = Gj ⊗ φ(gj ), (6)

where Gj is any self-adjoint operator on HS, and

φ(gj ) = 1√
2
[a∗(gj ) + a(gj )] (7)

is the field operator smoothed out with a function gj ∈ L2(R3,d3k), called a form factor.
Here, the smoothed-out creation and annihilation operators are defined by

a∗(g) =
∫

R3
g(k)a∗(k)d3k, a(g) =

∫
R3

g(k)a(k)d3k (8)

(we take annihilation operators to be anti-linear in their arguments). Interactions of the
form (6) induce processes of absorption and emission of quanta of R by the system S.

Our approach uses a spectral deformation (generated by translation in the energy variable
in a suitable Hilbert space). This method necessitates certain regularity of the form factors
gj . We represent gj (r, σ ) in spherical coordinates (r, σ ) ∈ R+ × S2 and denote by gj its
complex conjugate.

(R) Assumption on regularity (translation analyticity) of form factors. The maps

R × S2 	 (u,σ ) 
→ α(u)

√
|u|1/4

e−βu + 1

{
gj (

√
u,σ ), if u ≥ 0,

gj (
√−u,σ ), if u < 0,

(9)

where α(u) = 1, e−βu, extend analytically (in u) to maps from

(u,σ ) ∈ {z ∈ C : |Im z| < δ} × S2

to

L2(R × S2,dudσ),

for some δ > 0.

An example of a form factor satisfying this assumption is g(k) = |k|−1/2e−|k|2 .
The next assumption concerns the “complete splitting of resonances”. We make it merely

for the purpose of a lighter exposition of our results. Fix j and let e ∈ {E − E′ : E,E′ ∈
spec(Hj

S )} be an energy difference of the system S. In the resonance approach, the evolution
of S is described by resonance energies ε, which are complex in general and reflect the non-
unitary (irreversible) character of the reduced dynamics of S. As the interaction between S
and R is turned on, resonance energies ε bifurcate out of each (real) energy difference e.
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The total multiplicity of resonance energies bifurcating out of a given e equals mult(e) (the
multiplicity of e viewed as an eigenvalue of the operator H

j

S ⊗ 1S − 1S ⊗ H
j

S acting on
HS ⊗ HS). We label the resonances by r = (e, s), where e denotes the origin of bifurcation
and 1 ≤ s ≤ mult(e) counts distinct resonance energies.

(S) Assumption on complete splitting of resonances. At all time-steps j , for λj 
= 0 there
are mult(e) distinct resonance energies ε associated to each eigenvalue difference e.

One can deal equally well with degenerate resonance energies by adapting the arguments
of [20] to the time-dependent case. Assumption (S) can be verified by using a perturbative
analysis of the resonance energies (see (11) below).

1.1 Dynamics of S

Let us explain our main result on the dynamics of the system S, whose precise statement is
given in Theorem 2.1 below. We consider initial states of the form ω0 = ωS,0 ⊗ ωR,β , where
ωS,0 is an arbitrary state of S, and ωR,β is given by (5).1 Theorem 2.1 gives the following
representation of the evolution of the average of an observable A of the system S in the
initial state ω0.

ω0

(
αN(A)

) =
∑

r1,...,rN

ei
∑N

j=1 tj εj (rj )
ρr1,...,rN (A) + O

(
max

j
|λj |

)
. (10)

The sum is taken over indices rj = (e, s) which label the resonance energies εj (rj ) associ-
ated to the system at step j . The ρr1,...,rN are linear functionals on the algebra of observables
MS = B(HS) (bounded operators). Both εj (rj ) and ρr1,...,rN depend on λj , and the remain-
der term depends on N as well, but is uniform in the tj > 0 (it also depends on the interaction
vj , (6)). The resonance energies have the expansion

εj = e + λ2
j δ

j + O(λ4
j ) (11)

for small λj . Here, the δj are eigenvalues of an operator �j(e) acting on the doubled
space HS ⊗ HS, called the level shift operator associated to e at time-step j (see the de-
finition (74)). We have Im δj ≥ 0.2

The functionals ρr1,...,rN can be expressed as

ρr1,...,rN (A) = P
(
�0(r1, . . . , rN) A ⊗ 1S

)
, (12)

where P is a linear functional on the algebra MS ⊗1S acting on the doubled space HS ⊗ HS.
P depends on the initial state ω0 only. �0 is a product of “transition amplitudes” associated
to r1, . . . , rN ,

�0(r1, . . . , rN) =
⎡
⎣N−1∏

j=1

〈̃
ηj (rj ), η

j+1(rj+1)
〉
⎤
⎦ |η1(r1)〉〈̃ηN(rN)|. (13)

1Our theory works as well for states which are local perturbations of such states, but we restrict our exposition
to product initial states.
2This can be seen by direct calculation in concrete models, and it can also be derived from general consider-
ations, see as well [18].
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Here, the ηj (r), η̃j (r) ∈ HS ⊗ HS are (the lowest order contributions of) resonance eigen-
vectors, defined by

�j(e)ηj (r) = εj (r)ηj (r) and [�j(e)]∗η̃j (r) = εj (r)̃ηj (r) (14)

and normalized as
〈
ηj (r), η̃j (r)

〉 = 1,
〈
ηj (r), η̃j (r ′)

〉 = 0 if r 
= r ′ (15)

(recall that r = (e, s)). In (14), [�j(e)]∗ denotes the adjoint operator of �j(e).

Discussion of (10):

– At each moment when the Hamiltonian changes, the system starts a new dynamical
process with an initial condition determined by the final state of the previous process.
Note that even if we start in an unentangled (product) state of S + R, already after the
first bit of interaction the state will become entangled. Since S interacts with the same
reservoir at each time-step, the dynamics is not Markovian. The cumulative effect of the
interactions is encoded in the functionals ρr1,...,rN and the product of increments of the

dynamics eit1ε1(r1) · · · eitN εN (rN ).
– The case of a time-independent dynamics can be recovered from (10) as follows. If Hj is

close to Hj+1, then ηj (r) is close to ηj+1(r) and the transition amplitude
〈̃
ηj (rj ), η

j+1(rj+1)
〉 ≈ 〈̃

ηj (rj ), η
j (rj+1)

〉
(16)

is very small unless rj = rj+1, in which case it is unity (see (15)). We can view the
sequence r1, . . . , rN as a “path” of resonances: the system hops from resonance rj to
resonance rj+1 as time passes the moment t1 + · · · + tj . Thus for small differences Hj −
Hj+1, the main contribution to the sum in (10) comes from the constant paths rj = r =
const, with associated propagator eitε(r). In this limit of a time-independent Hamiltonian,
(10) reduces to the dynamics of S derived in [19, 21].

– If the interaction vj is energy exchanging then it typically drives the total system S + R
to its equilibrium state at a relaxation rate 1/τ

j

therm. In the regime tj � τ
j

therm one then
expects to find the system after each bit of constant interaction in equilibrium relative to
the dynamics at that moment. This is an adiabatic process during which the state of the
system follows its instantaneous equilibrium state, see also [1, 3].

1.2 Applications

We consider a spin- 1
2 particle subject to a time-dependent Hamiltonian, coupled to a thermal

Fermi field. The space of pure states of the spin (system S) is C
2, and the Hamiltonian at

time-step j is given by

H
j

S = �j

2
σz = �j

2

[
1 0

0 −1

]
, (17)

where �j ∈ R is the energy level spacing. At times j when �j switches its sign we say we
have a level crossing. The interaction of S with R is given by λv (constant in time), where λ

is a coupling constant, and (recall (7))

v = σx ⊗ φ(g) =
[

0 1

1 0

]
⊗ 1√

2
[a∗(g) + a(g)]. (18)
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The parameter regime λ2 � minj |�j | describes well separated resonances, while if λ2 is of
the order of the �j , or if λ2 � minj |�j |, then we have “overlapping resonances”.

1.2.1 Regime of Overlapping Resonances

Our goal is to analyze the dynamics of the system for small but independent values of λ

and �j . In Theorem 3.1 and Proposition 3.2 we give the explicit form of the resonance
data εj (r), ηj (r), η̃j (r) for this model, as well as the transition amplitudes 〈̃ηj (r), ηj+1(r ′)〉
(recall (13)). As an illustration of these results, we present here the case of a single sudden
level crossing and the limit of continuous time-dependent dynamics.

Single Sudden Level Crossing Consider a single sudden level crossing at time tc, whose
evolution is generated by (18) and

Ht
S = �1

2
σz, 0 ≤ t ≤ tc, H t

S = −�2

2
σz, tc < t, (19)

where �1,�2 > 0. Denote by pge(t) the probability that the system S is at time t in the
excited state of Ht

S, while at time zero it started off in the ground state of Ht=0
S . (By ground

state we mean the state with lowest energy.) We show in Sect. 3.1.1 that for independently
small values of λ and �max = max{�1,�2}, we have

pge(t) = 1

2

{
1 − eitε if 0 ≤ t < tc,

1 + eitε if t > tc,

}
+ O(|λ| + �max), (20)

where

ε = iπλ2γ0 + O
(
λ2(|λ| + �max)

)
(21)

with

γ0 = lim
r→0+

√
r

2

∫
S2

dσ |g(
√

r, σ )|2. (22)

It is assumed here that 0 < γ0 < ∞, which amounts to an infra-red (|k| ∼ 0) behaviour
g(|k|, σ ) ∼ |k|−1/2 in three space dimensions (spherical coordinates; see also Assump-
tion (R) in Sect. 1). Formula (20) shows in particular that at tc the probability jumps up
by an amount

δ = eitcε + O(|λ| + �max) = e−πγ0λ2tc[1+O(|λ|+�max)] + O(|λ| + �max). (23)

This is in part explained by the fact that the excited state itself jumps at tc from |+〉 to |−〉.
As t → ∞, pge(t) approaches 1/2 + O(|λ| + �max), which is the probability of finding S
in the excited state when the total system S + R is in equilibrium, provided λ and �max

are small. This is the correct value of this asymptotic probability, since the system exhibits
return to equilibrium.

In a time-dependent setting where energy levels of a quantum system are brought close
together (but do not cross) in the course of time, say due to some external forcing, a transition
from one energy state to another is called a Landau-Zener transition. Landau-Zener theory
is important in physics and chemistry, see e.g. [13, 22]. The influence of dissipation on
Landau-Zener transitions has been studied for different systems and transition probabilities
similar to (20) have been calculated [4, 24]. We mention that our method allows for crossing
of the energy levels in the course of time.
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Continuum Limit We investigate the continuum limit of the model (17) by setting tj = t
N

,
j = 1, . . . ,N , with fixed t and letting N → ∞. Our goal is to find the limit of the dominant
contribution to the dynamics, given by the sum in (10). We do not control the remainder
term in (10) uniformly in N in this paper (work on this is in progress).

We take �j = �(j t
N

), where �(t) is a continuously differentiable function of t ≥ 0 (of
course, one can deal with less regular � if desired), and we define τ j and σ by

τ j = �j

σ
, σ = π

2
λ2γ0, (24)

where γ0 is given in (22) above. For simplicity of the exposition, we will assume in what
follows that 0 < τmax < 1, where τmax := �max

σ
and �max = supt≥0 |�(t)|. This regime is

interesting since it accommodates the situation of level crossings (�(t) = 0) while λ is
fixed.

We have seen above (see (16)) that if �j+1 − �j is small, then the transition amplitude
〈̃ηj (r), ηj+1(r ′)〉 associated to a jump (r 
= r ′) in the resonance path at j is small. We show
in the proof of Theorem 3.4 that this amplitude is at most of the size

τ ′
max := sup

t≥0
|τ ′(t)|. (25)

(The ′ here means derivative.) The sum over all paths in (10) can be written as a sum over all
paths with k jumps, k = 0, . . . ,N − 1. This sum becomes an infinite series in the continuous
time limit, and the summand associated to a path with k jumps is of the order of (τ ′

max)
k .

For small τ ′
max, one can thus (rigorously) approximate the series by the first few terms. In

Theorem 3.4 we show that the continuous time limit of the sum in (10) is given by

4∑
r=1

ei
∫ t

0 ε(s,r)dsw(0, t, r) 〈ψ0,Bη(0, r)〉 〈̃η(t, r),Aψref〉

+
∫ t

0
ei

∫ s
0 ε(s′,3)ds′+i

∫ t
s ε(s′,4)ds′

w(0, s,3)
y+(s)y ′−(s)

1 + y+(s)2
w(s, t,4)ds

× 〈ψ0,Bη(0,3)〉 〈̃η(t,4),Aψref〉

+
∫ t

0
ei

∫ s
0 ε(s′,4)ds′+i

∫ t
s ε(s′,3)ds′

w(0, s,4)
y−(s)y ′+(s)

1 + y−(s)2
w(s, t,3)ds

× 〈ψ0,Bη(0,4)〉 〈̃η(t,3),Aψref〉
+ O

([τ ′
maxt]2e2Cτ ′

maxt
)
. (26)

Here, ε(t, r) and η(t, r), η̃(t, r) are the resonance energies and resonance vectors at time
t ≥ 0 (with r = 1, . . . ,4; see Sect. 3.1.2 for their explicit form). The functions w and y±
are associated to the transition amplitudes, ψ0 is the (Gelfand-Naimark-Segal) vector rep-
resentative of the initial state of S (represented in the Hilbert space HS ⊗ HS), ψref is the
vector representing the trace state of S, and B ∈ 1S ⊗ MS is the unique operator satisfying
ψ0 = Bψref. We refer the reader to Sect. 3.1.2 for the explicit expressions of all quantities
involved in (26).

The sum in (26) is the contribution coming from the constant paths, while the two in-
tegrals come from paths having a single jump (taking place at the integration variable s).
Both these integrals are of the order of τ ′

max. Naturally, the Riemann sum in the propagator
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of (10) has now become an integral, and the product of the transition coefficients has turned
into the factors w (associated to products without jumps) and the fractions involving the y±
(associated with single jumps). The remainder term contains the contributions of all paths
with more than one jump. In fact, it is not very hard to find the continuous time limit of
all paths with arbitrarily many jumps. We do not present the corresponding formulas in this
work since they are rather cumbersome.

1.2.2 Regime of Isolated Resonances

The regime of isolated resonances can be obtained as a limit (τ j � 1) of the case of over-
lapping resonances, but not the other way around. More specifically, the expressions for the
resonance energies and resonance vectors obtained for overlapping resonances (see Theo-
rem 3.1) are still valid once equations (22) and (24) are replaced by

γ (�j ) =
√|�j |

2

∫
S2

dσ

∣∣∣g
(√

|�j |, σ
)∣∣∣2 , (27)

σ(�j ) = π

2
λ2γ (�j ). (28)

We present the explicit form of the resonance data in Theorem 3.5.

Single Sudden Level Crossing With the same set-up as before, but now assuming that
�1,�2 > 0 are fixed independently of λ,

pge(t) = 1 − e−π2λtγ (�1)

eβ�1 + 1
+ O(|λ|) (29)

for t < tc and

pge(t) = 1

e−β�2 + 1
+ e−πλ2tcγ (�1)

e−β�1 + 1

[
e−πλ2(t−tc)γ (�2) − 1 − e−β(�1+�2)

e−β�2 + 1

]
+ O(|λ|) (30)

for t > tc . Therefore, there is a jump up at tc equal to e−π2λtcγ (�1) +O(|λ|), in perfect analogy
to the situation before.

2 Dynamical Resonance Theory

We give a precise definition of the model in Sect. 2.1. In Sect. 2.2 we prove formula (10).
The main result is Theorem 2.1.

2.1 Description of the Model

The Hilbert space of states of the system S + R is given by

H = HS ⊗ HS ⊗ F , (31)

where HS = C
d is the Hilbert space of pure states of S, and

F = F
(
L2(R × S2,du × d�)

)
(32)
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is the fermionic Fock space over the one-particle space L2(R3 × S2,du × d�). H is the
(Gelfand-Naimark-Segal) representation Hilbert space associated to the reference state

ωref = ωS,ref ⊗ ωR,β . (33)

Here, ωS,ref is the trace state on the C∗ algebra of observables AS = B(HS) (bounded op-
erators on HS), and ωR,β is the equilibrium state of the infinitely extended free Fermi gas
(see also (5)) on the C∗ algebra AR generated by the creation and annihilation operators
{a(g), a∗(g) : g ∈ L2(R3,d3k)} (called the Canonical Anticommutation Relation (CAR) al-
gebra). We refer the reader to Appendix A.2 for more information on this representation of
the CAR algebra.

The Hilbert space (31) supports in particular all local modifications ω of ωref. Such an ω

has the form

ω(A) = 〈ψω,π(A)ψω〉, (34)

for all A ∈ A = AS ⊗ AR, for some ψω ∈ H, where π : M → B(H) is the representation
map.

The dynamics of the system generated by Hj , (3), is represented on H by a Liouville
operator Lj :

π
(
eitHj

Ae−itHj ) = eitLj

π(A)e−itLj

, (35)

for all A ∈ A and all t ∈ R. Consequently, (2) is represented on H as

eit1L1 · · · eitN LN

π(A)e−itN LN · · · e−it1L1
. (36)

(Of course, we understand that the thermodynamic limit has been performed.) The Liouville
operators have the form (see Appendix A.2)

Lj = L
j

0 + λjV
j , (37)

where

L
j

0 = L
j

S + LR. (38)

Here,

L
j

S = H
j

S ⊗ 1 − 1 ⊗ H
j

S (39)

acts on HS ⊗ HS and

LR = d�(u) (40)

is the second quantization of multiplication by u ∈ R acting on F . The interaction operator

V j = π(vj ) (41)

belongs to the C∗ algebra π(A).
It is useful and standard to consider the weak closure of A,

M = (
AS ⊗ AR

)′′ = B(HS) ⊗ 1S ⊗ A
′′
R. (42)

M is a von Neumann algebra acting on H. We introduce the reference state

ψref = ψS ⊗ ψR, (43)
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where ψS ∈ HS ⊗ HS represents the trace state of S, and where ψR ∈ F is the vacuum vector
of F , representing the equilibrium state of R. The vector ψref is cyclic and separating for the
von Neumann algebra M, and we denote by J = JS ⊗ JR, � = 1S ⊗ 1S ⊗ �R the modular
conjugation and the modular operator of the pair (M,ψref) (see also [8, 15]). It follows from
the form of the interaction, (6) and Assumption (R) in Sect. 1 that �1/2V j�−1/2 ∈ M for
all j .

2.2 Proof of (10)

Our main result on the piecewise constant dynamics is the following.

Theorem 2.1 (Dominant paths) There is a constant c > 0 s.t. if maxj |λj | < c, then we have
the following. Let A ∈ MS be any observable of S, and let ψ0 be any initial state of S + R,
given by Bψref some B ∈ M′

S. Then

〈
ψ0, eit1L1 · · · eitN LN

Ae−itN LN · · · e−it1L1
ψ0

〉

=
∑

r1,...,rN

ei
∑N

j=1 tj εj (rj ) 〈ψ0,B�0(r1, . . . , rN)Aψref〉 + O
(

max
j

|λj |
)
, (44)

where the εj (r) are the resonance eigenvalues (see (11) and also Proposition 2.7). The error
term in (44) is uniform in the tj ≥ 0. Let ηj (r), η̃j (r) be the resonance eigenvectors (see (14)
and also (73)). Then

�0(r1, . . . , rN )

= |η1(r1)〉
〈̃
η1(r1), η

2(r2)
〉 · · · 〈̃ηN−1(rN−1), η

N(rN)
〉 〈̃ηN(rN)|. (45)

Remarks 1. We think that a more detailed analysis of the remainder term in (44) would yield
an estimate O(maxj |λj |) uniformly in N , but we do not prove this here.

2. Theorem 2.1 implies formula (10).

The remaining part of this section is devoted to the proof of Theorem 2.1. We build up
the proof in several steps.

2.2.1 Passage from the Operators Lj to the Operators Kj

Let (V ′)j be any operator belonging to the commutant M′,3 and set Kj = Lj + λj (V
′)j

(with domain D(Kj ) = D(Lj ) = D(L
j

0)). We define the operator eitKj
, t ∈ R, via the

operator-norm convergent Dyson series

eitKj =
∑
k≥0

λk
j

∫ t

0
ds1 · · ·

∫ sk−1

0
dsk(V

′)j (sk) · · · (V ′)j (s1)e
itLj

, (46)

where (V ′)j (s) = eisLj
(V ′)j e−isLj

.

3The commutant of M, (35), is defined as M′ = {A ∈ B(H) : AB = BA∀B ∈ M}.
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Since J�1/2Aψref = A∗ψref for all A ∈ M, and since V j = (V j )∗, we see that upon
choosing

(V ′)j = −J�1/2V jJ�1/2,

we have Kjψref = 0 and hence

eitKj

ψref = ψref.

Note that J�1/2 = �−1/2J , and that JMJ = M′, so that (V ′)j ∈ M′ indeed.

Proposition 2.2 We have

eitKj

Ae−itKj = eitLj

Ae−itLj

, (47)

for all t ∈ R, A ∈ M.

Proof It is easy to verify directly that for φ ∈ D(L
j

0), we have d
dt

eitKj
φ = eitKj

Kjφ. We

write (46) as eitKj = S ′(t)eitLj = eitLj
R′(t), where S ′(t) is given by the series on the r.h.s.

of (46), and R′(t) = e−itLj
S(t)eitLj

. Both S ′(t) and R′(t) belong to the commutant M′.
Consequently, we have for all A ∈ M

eitKj

Ae−itKj = S ′(t)eitLj

Ae−itLj

R′(−t) = eitLj

Ae−itLj

S ′(t)R′(−t).

Furthermore, S ′(t)R′(−t) = eitKj
e−itLj

eitLj
e−itKj = 1, and thus we obtain (47). �

2.2.2 Resolvent Representation of Propagators

Proposition 2.3 Let A ∈ M and ψ ∈ H. We have for t ≥ 0

〈ψ, eitKj

Aψref〉 = −1

2π i

∫
R−iγ

eizt 〈ψ, (Kj − z)−1Aψref〉dz, (48)

if γ > C|λj | for some C > 0.

Proof The function t 
→ 〈ψ, eitLj
Ae−itLj

ψref〉 = 〈ψ, eitKj
Aψref〉 is bounded and continuous

in t ∈ R. It follows that

〈ψ, eitKj

Aψref〉 = 1

2π i

∫ γ+i∞

γ−i∞

[
ezt

∫ ∞

0
e−zs〈ψ, eisKj

Aψref〉ds

]
dz

= 1

2π i

∫ γ+i∞

γ−i∞
ezt

〈
ψ, i(Kj + iz)−1Aψref

〉
dz

= −1

2π i

∫
R−iγ

eizt
〈
ψ, (Kj − z)−1Aψref

〉
dz. (49)

In the first step, we use the Laplace inversion theorem (see e.g. [23], Chap. II, Theorem 9.2)
and in the second step we integrate the propagator to obtain the resolvent. �
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2.2.3 Analytic Continuation of Matrix Elements

For θ ∈ R we define the unitary group Uθ = eθd�(∂u) on F , (translation in the radial vari-
able u, see (32)), and we set

L
j

0(θ) = UθL
j

0U
−1
θ . (50)

An easy calculation gives L
j

0(θ) = L
j

S +LR +θN , where N = d�(1) is the number operator
on F . Accordingly, we define in the same way

Kj(θ) = Lj(θ) + λj I
j (θ), (51)

I j (θ) = V j (θ) + (V ′)j (θ). (52)

Let θ0 > 0 be fixed and define the strip

Sθ0 = {θ ∈ C : |Im θ | < θ0}. (53)

In accordance with analytic spectral deformation theory, we assume the following analyticity
condition.

(C1) θ 
→ I j (θ) has an analytic continuation as a map from Sθ0 to the bounded operators
on H, and supθ∈Sθ0

‖I j (θ)‖ = C < ∞.

Proposition 2.4 If the form factors gj satisfy Assumption (R) in Sect. 1, then Condition
(C1) is satisfied.

The proof of this proposition is not hard (one examines directly the explicit expression
for I j (θ), see also Appendix A.2). The following is the key technical result of the analytic
deformation method.

Proposition 2.5 Take z with Im z < −C|λj |, where C is the constant in Condition (C1)
above. The map θ 
→ (Kj (θ) − z)−1 has an extension from θ ∈ R to 0 ≤ Im θ < θ0. This
extension (denoted by the same symbol) is an analytic map from {θ ∈ C : 0 < Im θ < θ0} to
the bounded operators of H, and it is continuous in the operator norm as Im θ ↓ 0, at all
θ 
= 0.

Proof We fix the index j and omit it from the notation. Let θ ∈ R. On D(L0) ∩ D(N) we
have L0(θ) = L0 + θN and so, by (C1), K(θ) = L0 + θN +λI (θ) has analytic continuation
to θ ∈ Sθ0 (as a closed operator on D(L0) ∩ D(N)). The spectrum of the normal operator
L0 + θN consists of real eigenvalues e ∈ spec(LS) and of horizontal lines {nθ +R : n ∈ N}
of continuous spectrum. (Note that L0 + θN is the sum of two commuting self-adjoint
operators.) For Im θ 
= 0 the eigenvalues e are isolated. It follows from standard perturbation
theory that the spectrum of K(θ) lies within a distance of |λ|‖I (θ)‖ from that of L0 + θN .

For 0 ≤ Im θ < θ0, all Im z < −C|λ| (with C as in condition (C1)) belong to the resolvent
set of L0 + θN , as well as to the resolvent set of K(θ). For such z we express the resolvent
using the norm-convergent Neumann series

(K(θ) − z)−1 = (L0 + θN − z)−1
∑
n≥0

(−λ)n[I (θ)(L0 + θN − z)−1]n.

It follows that for all z with Im z < −C|λ|,
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1*. N(K(θ) − z)−1 is bounded for all nonzero θ with 0 ≤ Im θ < θ0,
2*. (K(θ) − z)−1 is bounded uniformly in θ s.t. 0 ≤ Im θ < θ0,
3*. Ran(K(θ) − z)−1 ⊂ D(L0) ∩ D(N) for all nonzero θ s.t. 0 ≤ Im θ < θ0.

Let θ be s.t. 0 < Im θ < θ0 and take �θ to be small so that 0 < Im(θ + �θ) < θ0. The
resolvent identity gives

(K(θ + �θ) − z)−1 − (K(θ) − z)−1

= (K(θ + �θ) − z)−1
[
�θN + λI (θ + �θ) − λI (θ)

]
(K(θ) − z)−1. (54)

Relation (54) (together with the above points 1* and 2*.) shows that θ 
→ (K(θ) − z)−1 is
continuous on {θ ∈ C : 0 < Im θ < θ0} in the topology of bounded operators. Furthermore,

(K(θ + �θ) − z)−1 − (K(θ) − z)−1

�θ

= (K(θ + �θ) − z)−1
[
N + λX(θ,�θ)

]
(K(θ) − z)−1, (55)

where lim�θ→0 X(θ,�θ) = ∂θ I (θ). Combining (54), (55) and points 1*, 2* above, we see
that for all Im z < −C|λ| and θ s.t. 0 < Im θ < θ0,

∂θ (K(θ) − z)−1 = (K(θ) − z)−1
[
N + λ∂θI (θ)

]
(K(θ) − z)−1,

the r.h.s. being a bounded operator.
We now show that (K(θ) − z)−1 is continuous as θ = x + iy → x ∈ R\{0}, y > 0. The

resolvent identity gives

(K(x + iy) − z)−1

= (K(x) − z)−1 + (K(x + iy) − z)−1
[
K(x) − K(x + iy)

]
(K(x) − z)−1. (56)

We rewrite (56) in the form

(K(x + iy) − z)−1[1 − W(y)] = (K(x) − z)−1,

where

W(y) := [K(x) − K(x + iy)](K(x) − z)−1 −→ 0

in operator norm, as y → 0 (here it is important that x 
= 0). It follows that

lim
y→0+

(K(x + iy) − z)−1 = lim
y→0+

(K(x) − z)−1[1 − W(y)]−1 = (K(x) − z)−1.

This completes the proof of Proposition 2.5. �

2.2.4 Separating pole Contributions

For A ∈ MS and 0 ≤ j ≤ N − 1 we set

Aj = eitj+1Lj+1 · · · eitN LN

Ae−itN LN

e−itj+1Lj+1
, (57)

and we define AN = A. Let B be the operator in the commutant M′
S satisfying ψ0 = Bψref,

and denote by PψR = |ψR〉〈ψR| the orthogonal projection onto HS ⊗ HS ⊗CψR. If all λj = 0,
then the dynamics of S and R decouple, and we have Aj ∈ MS ⊗ 1R, and thus Ajψref ∈
RanPψR . The following result follows from an easy perturbation expansion.
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Lemma 2.6 Set P ψR = 1 − PψR . We have
∥∥PψRAjψref

∥∥ ≤ Cj max
j

|λj | ‖A‖.

Using this result, we arrive at the representation
〈
ψ0, eit1L1

A1e−it1L1
ψ0

〉
=

〈
ψ0,Beit1K1

A1ψref

〉
=

〈
ψ0,Beit1K1

PψRA1ψref

〉
+ R1, (58)

where ‖R1‖ ≤ C maxj |λj | (with a constant C depending on N and ‖A‖). The scalar product
term on the right side of (58) can now be treated as

〈
ψ0,Beit1K1

PψRA1ψref

〉
=

〈
ψ0,Beit1K1

PψR eit2K2
A2ψref

〉

=
〈
ψ0,Beit1K1

PψR eit2K2
PψRA2ψref

〉
+ R2,

with ‖R2‖ ≤ C maxj |λj |. We iterate this procedure and arrive at

〈
ψ0, eit1L1 · · · eitN LN

Ae−itN LN · · · e−it1L1
ψ0

〉

=
〈
ψ0,BPψR eit1K1

PψR · · ·PψR eitN KN

PψRAψref

〉
+ R, (59)

where the remainder term

R =
N∑

j=1

Rj (60)

satisfies ‖R‖ ≤ C maxj |λj |, with C depending on N .
Using the resolvent representation (49), we obtain

PψR eitj Kj

PψR = −1

2π i

∫
R−iγ

eitj zPψR(Kj − z)−1PψR dz. (61)

We now perform spectral deformation in the integrand on the right side of (61). For θ ∈ R

we have PψRU ∗
θ = PψR = UθPψR and it follows that

PψR(Kj − z)−1PψR = PψR(Kj (θ) − z)−1PψR . (62)

Proposition 2.5 shows that (62) has an extension to values of θ in 0 ≤ Im θ < θ0, and that
this extension is analytic in the open strip 0 < Im θ < θ0, and continuous on R\{0}, provided
Imz < −C maxj |λj |. However, since (62) is constant for θ on the real axis, it must actually
be constant on the entire region {0 ≤ Im θ < θ0}.4 This shows that (62) holds for Im z <

−C maxj |λj | and 0 ≤ Im θ < θ0. We thus have

PψR eitj Kj

PψR = −1

2π i

∫
R−iγ

eitj zPψR(Kj (θ) − z)−1PψR dz, (63)

for all θ with 0 ≤ Im θ < θ0, and where γ > C maxj |λj |. We analyze the integral on the
r.h.s. of (63) in more detail. The following is a standard result [14, 19–21].

4Apply the Schwarz reflection principle to the analytic function F(θ) − F(0), where F(θ) equals (62).
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Proposition 2.7 Fix θ ′ with 0 < θ ′ < θ0. There is a constant c0 > 0 s.t. if |λ| ≤ c0/β then
the spectrum of Kj(θ), lying in the complex half-plane {z ∈ C : Im z < θ ′/2}, is independent
of θ in the region θ ′ < Im θ < θ0. It consists of the distinct isolated eigenvalues

{
εj (e, s) : e ∈ spec(Lj

S), s = 1, . . . , ν(e)
}
,

where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e into distinct resonances.
Moreover, we have εj (e, s) → e as λ → 0, for all s, and Im ε(e, s) ≥ 0. The continuous
spectrum of Kj(θ) lies in the region {Im z > 3θ ′/4}.

We now “shift” the path of integration R− iγ of the integral in (63) to the path R+3iθ ′/4
in the upper half plane. Thereby we pick up contributions (residues) coming from the poles
of the integrand. Let Cj (e, s) be a small circle around εj (e, s), not enclosing or touching any
other spectrum of Kj(θ). Define the generally non-orthogonal Riesz spectral projections

Qj(e, s) = −1

2π i

∫
Cj (e,s)

(Kj (θ) − z)−1dz, (64)

and the operator

Qj(∞) = Qj(∞, tj , θ) = −1

2π i

∫
R+3iθ ′/4

eitj zj (Kj (θ) − zj )
−1dzj . (65)

For any vectors ψ,φ ∈ H we have by standard contour deformation of complex integrals

−1

2π i

∫
R−iγ

eitj zj
〈
ψ, (Kj (θ) − zj )

−1φ
〉
dzj

=
∑

e∈spec(Lj
S)

ν(e)∑
s=1

eitj εj (e,s)
〈
ψ,Qj(e, s)φ

〉+ 〈
ψ,Qj (∞)φ

〉
. (66)

The operator Qj(∞) reduces to eitj L0(θ)PψR for λj = 0, and one can show the following
result.

Proposition 2.8 ([19, 21]) We have ‖PψRQj(∞)PψR‖ ≤ Cλ2
j e−3tj θ ′/4.

Combining relations (59), (63), (66) and Proposition 2.8, we obtain
〈
ψ0, eit1L1 · · · eitN LN

Ae−itN LN · · · e−it1L1
ψ0

〉

=
∑

r1,...,rN

ei
∑N

j=1 tj εj (rj )
〈
B∗ψ0,�(r1, . . . , rN )Aψref

〉+ R′, (67)

where the (multi-)indices rj are summed over {(e, s) : e ∈ spec(Lj

S), s = 1, . . . , ν(e)}, with
εj (rj ) = εj (e, s) if rj = (e, s) and where we introduce

�(r1, . . . , rN) = Q1(r1) · · ·QN(rN), (68)

with Qj(rj ) given by (64). The remainder term R′ in (67) satisfies ‖R‖ ≤ C maxj |λj | (with
C depending on N ).
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As explained in the introduction, we assume that

(S) Each projection Qj(e, s) has rank one (for λj > 0).

This assumption means that all resonance energies εj (e, s) are simple, and it is valid in all
our applications. One may modify the results of [20], where degenerate resonance energies
are treated for time-independent Hamiltonians, to eliminate Condition (S).

Having rank one, the projections are given by

Qj(rj ) = |χj (rj )〉〈χ̃ j (rj )|, rj = (e, s), (69)

where

Kj(θ)χj (rj ) = εj (rj )χ
j (rj ), (70)

[Kj(θ)]∗χ̃ j (rj ) = [εj (rj )]∗χ̃ j (rj ), (71)

and the resonance eigenvectors are normalized as

〈
χj (rj ), χ̃

j (rj )
〉 = 1. (72)

Using perturbation theory (e.g. the Feshbach technique, [6, 19–21]), one sees that the
resonance eigenvectors have the expansion

χj (rj )=ηj (rj ) ⊗ ψR + O(λj ) and

χ̃ j (rj )= η̃j (rj ) ⊗ ψR + O(λj ),
(73)

where ψR is the vacuum vector of F , and where the vectors ηj (rj ) and η̃j (rj ), for rj = (e, s),
belong to the eigenspace of L

j

S associated to the eigenvalue e. Let P
j
e be the orthogonal

spectral projection of L
j

S associated to the eigenvalue e. We define the level shift operator
�j(e) by

�j(e) = P j
e I jP

j
(e)(L

j

0 − e + i0)−1P
j
(e)I jP j

e , (74)

where P
j

e = 1 − P
j
e and where L

j

0 = P
j

eL
j

0P
j

e � RanP
j

e . The vectors ηj (e, s) and η̃j (e, s)

are eigenvectors of �j(e) and its adjoint [�j(e)]∗,

�j(e)ηj (e, s)= δj (e, s)ηj (e, s) and

[�j(e)]∗η̃j (e, s)= δj (e, s)̃ηj (e, s),
(75)

satisfying the normalization relation

〈
ηj (e, s), η̃j (e, s)

〉 = 1. (76)

The resonance energies have the expansion

εj (e, s) = e − λ2
j δ

j (e, s) + O(λ4
j ). (77)

The proof of Theorem 2.1 is now complete by combining expansion (73) with (67) and (68).
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3 Applications: Details and Proofs

The setting of the applications is given in Sect. 1.2.

3.1 Regime of Overlapping Resonances

The explicit (perturbative) form of the resonance data for the system is given in the following
theorem. Recall that τ j and σ are defined in (24).

Theorem 3.1 (Resonances of K) There is a constant C s.t. if |λ|+ maxj |�j | < C, then the
resonances of Kj in the region {z ∈ C : Im z < θ0} are given by

εj (1) = 0, (78)

εj (2) = 2iσ + O
(
λ2(|λ| + �max)

)
, (79)

εj (3) = iσ + σ
√

(τ j )2 − 1 + O
(
λ2(|λ| + �max)

)
, (80)

εj (4) = iσ − σ
√

(τ j )2 − 1 + O
(
λ2(|λ| + �max)

)
, (81)

where the square root always means the principal branch, with branch-cut on the negative
real axis (the argument function takes values in (−π,π]). The resonance eigenvectors χj (r)

and χ̃ j (r), r = 1, . . . ,4, are given by (73), with

ηj (1) = η̃j (1) = 1√
2
[ϕ++ + ϕ−−], (82)

ηj (2) = η̃j (2) = 1√
2
[ϕ++ − ϕ−−], (83)

ηj (3) = ϕ+− + y
j
+ϕ−+, η̃j (3) = α

j
+(ϕ+− + y

j
+ϕ−+), (84)

ηj (4) = ϕ+− + y
j
−ϕ−+, η̃j (4) = α

j
−(ϕ+− + y

j
−ϕ−+), (85)

where

y
j
± = −iτ j ± i

√
(τ j )2 − 1, α

j
± = [1 + (y

j
±)2]−1. (86)

It follows from Theorem 3.1 that all resonances are non-degenerate provided (τ j )2 
= 1
for all j , a condition we assume to hold in this section. Hence condition (S) is satisfied (see
introduction as well as Sect. 2.2.4). We define the transition coefficients

T j (r, r ′) = 〈̃
ηj (r), ηj+1(r ′)

〉
, r, r ′ = 1, . . . ,4, j = 1,2, . . . , (87)

in terms of which the dominant path �0(r1, . . . , rN ), (45), can be written as

�0(r1, . . . , rN) =
⎡
⎣N−1∏

j=1

T j (rj , rj+1)

⎤
⎦ |η1(r1)〉〈̃ηN(rN)|. (88)

Before proving Theorem 3.1, we mention that expressions (82)–(86) yield the following
result.
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Proposition 3.2 (Transition coefficients) We have

T j (1,1) = T j (2,2) = 1,

T j (3,3) = 1 + α
j
+y

j
+[yj+1

+ − y
j
+],

T j (4,4) = 1 + α
j
−y

j
−[yj+1

− − y
j
−],

T j (3,4) = α
j
+y

j
+[yj+1

− − y
j
−],

T j (4,3) = α
j
−y

j
−[yj+1

+ − y
j
+].

All other transition coefficients vanish. (Note that if �j+1 = �j then T j (r, r ′) = δr,r ′ (Kro-
necker symbol).)

In the regime of separated resonances, where τmin := minj |τ j | � 1, we have

T j (3,3), T j (4,4) = 1 + τ j+1 − τ j

2τ j
∓ |τ j+1| − |τ j |

2τ j
+ O

(
1/τ 2

min

)
,

T j (3,4), T j (4,3) = τ j+1 − τ j

2τ j
± |τ j+1| − |τ j |

2τ j
+ O

(
1/τ 2

min

)
.

In the regime of overlapping resonances, where τmax := maxj |τ j | � 1, we have

T j (3,3), T j (4,4) = 1 ± i
τ j+1 − τ j

2
+ O

(
τ 2

max

)
,

T j (3,4), T j (4,3) = ±i
τ j+1 − τ j

2
+ O

(
τ 2

max

)
.

Proof of Theorem 3.1 Throughout the proof, we consider j fixed and do not display it. The
unperturbed Liouville operator L0 = LR has a four-fold degenerate eigenvalue at the origin,
and absolutely continuous spectrum filling the entire real axis. We have K = L0 + I , where

I = �

2
LS + λ[V − V ′], (89)

with LS = σz ⊗1−1⊗σz, V = σx ⊗1S ⊗ϕβ(g) and V ′ = 1S ⊗σx ⊗ ϕ̃β(g). The spectrally
deformed operator, for θ ∈ Sθ0 , is given by

K(θ) = L0 + θN + I (θ), (90)

where N = d�(1) is the number operator in F , and where

I (θ) = �

2
LS + λ[V (θ) + V ′(θ)]. (91)

We consider θ = iθ ′, with θ ′ > 0. Let P be the projection onto HS ⊗ HS ⊗ CψR, and let
P = 1−P . We denote by T the restriction of an operator T to the range of P . The estimate
‖P (LR + iθ ′N − z)−1‖ = [dist(z, iθ ′

N
∗ + R)]−1 implies

∥∥P (LR + iθ ′N − z)−1
∥∥ = 2

θ ′ , for Im z < θ ′/2. (92)
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The Neumann series

P (K(iθ ′) − z)−1P

= P (LR + iθ ′N − z)−1P
∑
n≥0

(−1)n
[
I (iθ ′)(LR + iθN − z)−1P

]n
(93)

converges for all Im z < θ ′/2, provided that ‖I (iθ ′)‖ 2
θ ′ < 1. The latter condition is satisfied

for |�| + |λ| < C(θ0), see the assumptions in Theorem 3.1. We consider spectral points z

with Im z < θ ′/2. The Feshbach map method [6, 19–21] tells us that such a z belongs to the
spectrum of K(iθ ′) if and only if it belongs to the spectrum of the Feshbach map applied to
K(iθ ′),

FP,z(K(iθ ′)) = P
[
K(iθ ′) − I (iθ ′)P (K(iθ ′) − z)−1PI (iθ ′)

]
P. (94)

Using (91) and (93) we obtain

FP,z(K(iθ ′))

= P
�

2
LS − λ2P [V (iθ ′) − V ′(iθ ′)]P (LR + iθ ′N − z)−1P [V (iθ ′) − V ′(iθ ′)]P

+ O
(
λ2(|�| + |λ|)). (95)

Furthermore, the estimate (LR + iθ ′N − z)−1P = (LR + iθ ′N)−1P + O(|z|/(θ ′)2) leads to
(fixed θ ′)

FP,z(K(iθ ′)) = � + O
(
λ2(|�| + |λ| + |z|)), (96)

where

� = �

2
LS − λ2�R (97)

is the level shift operator. Here,

�R = P [V − V ′]P(LR + i0)−1P [V − V ′]P. (98)

We understand (96), (97) and (98) as operators acting on RanP = C
2 ⊗ C

2. In (98) we
have eliminated the spectral deformation parameter iθ ′ by analyticity in a standard fashion,
replacing it by the (operator norm) limit of (LR + iε)−1P as ε ↓ 0.

Our next task is to calculate the eigenvalues and eigenvectors of the level shift opera-
tor �. Using the explicit form of V and V ′ we obtain the following result by a standard and
straightforward calculation (see also [9, 16, 19–21], for instance).

Lemma 3.3 We have λ2�R = −iσ + iσ (σx ⊗ σx), where σ = π
2 λ2γ0, with γ0 given in (22),

and where σx is the Pauli matrix (cf. (18)).

In the ordered orthonormal basis {ϕ++, ϕ+−, ϕ−+, ϕ−−} of C
2 ⊗ C

2, the level shift oper-
ator (97) is represented by the matrix

� = iσ +

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 −iσ

0 � −iσ 0

0 −iσ −� 0

−iσ 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (99)
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It is now a simple matter to verify that

spec(�) = {0,2iσ, iσ [1 ∓ i
√

(�/σ)2 − 1]},

with corresponding eigenvectors η(1), . . . , η(4) given by (82)–(85) (with j fixed).
It follows from (96) and the isospectrality of the Feshbach map (mentioned before (94))

that the resonance eigenvalues ε(r) are given by (78)–(80).
One equally easily finds the eigenvectors η̃(1), . . . , η̃(4) of the adjoint of (99).
This completes the proof of Theorem 3.1. �

3.1.1 Single Sudden Level Crossing

The Hamiltonian is given by (19). The following is a proof of the expression (20) for the
transition probability pge(t).

The probability pge(t), for t > tc, is given by

pge(t) =
〈
ψ0, eitcL1

ei(t−tc)L
2
(A ⊗ 1S ⊗ 1R)e−i(t−tc)L

2
e−itcL1

ψ0

〉
, (100)

where ψ0 = ϕ−− ⊗ ψR, and where A = |ϕ−〉〈ϕ−|. (Note that ϕ− is the excited state of H 2
S .)

We use Theorem 2.1 with B = √
2 1S ⊗ |ϕ−〉〈ϕ−| (so that BψS = ϕ−−, where ψS is the

trace state of S). The sum in (44) has only two terms (since we have only one jump in the
Hamiltonian), and we obtain

pge(t) =
∑
r1,r2

eitcε1(r1)+i(t−tc)ε
2(r2)T (r1, r2)

〈
ϕ−−, η1(r1)

〉 〈̃
η2(r2), ϕ−−

〉

+ O(|λ| + �max), (101)

where the remaider here contains an O(�max) term since we carry out perturbation theory
in the coupling constant λ and the energy spacing � simultaneously (overlapping resonance
regime). Theorem 3.1 and 3.2 then imply that

pge(t) = 1

2
+ 1

2
eitcε1(2)+i(t−tc)ε

2(2) + O(|λ| + �max),

which shows (20) for t > tc. The proof for 0 ≤ t < tc goes along the same lines (and is
actually easier, since there is no jump in the Hamiltonian in this case).

3.1.2 Continuum Limit and Slow Variation Expansion (τ ′(t) small)

We investigate in this section the continuum limit, as explained in Sect. 1.2.
All quantities in Theorem 3.1 and Proposition 3.2 can be viewed as depending on con-

tinuous time t by the substitution j 
→ j t
N

. For instance εj (3) = ε(j t
N

,3), where

ε(t,3) = iσ + iσ
√

1 − τ(t)2 + O
(
λ2(|λ| + �max)

)
, (102)

with τ j = τ(j t
N

) and y
j
± = y±(j t

N
) with

y±(t) = −iτ(t) ∓
√

1 − τ(t)2.
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Similarly, the continuous time resonance vectors are denoted by η(t, r), η̃(t, r); for instance,

η(t,3) = ϕ+− + y+(t)ϕ−+, η̃(t,3) = α+(t)
(
ϕ+− + y+(t)ϕ−+

)
, (103)

and so on.
We define for s, t ≥ 0 the quantities w(s, t,1) = w(s, t,2) = 1, and

w(s, t,3) =
√

1 + y+(t)2

1 + y+(s)2
, w(s, t,4) =

√
1 + y−(t)2

1 + y−(s)2
. (104)

It is quite clear (see the proof of Theorem 3.4 below for details) that the transition coef-
ficients T j (r, r ′) associated to a jump (r 
= r ′) are of the size

τ ′
max := sup

t≥0
|τ ′(t)|. (105)

Now the sum over all paths in (44) can be written as a sum over all paths with k jumps,
k = 0, . . . ,N − 1. This sum becomes an infinite series in the continuous time limit. Each
path with k jumps is of the order of (τ ′

max)
k , and so for small τ ′

max, one can approximate the
series by the first few terms.

Theorem 3.4 (Continuous time limit) Let η(t, r) and η̃(t, r) be the resonance vectors at
time t ≥ 0, where r = 1, . . . ,4 (see (103)). The continuous time limit of the main term of (44),∑

r1,...,rN
ei

∑N
j=1 tj εj (rj )〈B∗ψ0,�0(r1, . . . , rN)Aψref〉, is given by (26).

Proof By the mean value theorem we have

y
j+1
± − y

j
± = t

N

[
−iτ ′(t1) ± τ ′(t2)

τ (t2)√
1 − τ(t2)2

]
,

where t1, t2 ∈ (j t/N, (j + 1)t/N). Thus the transition coefficients satisfy

T j (r, r) = 1 + O
(
τ ′

maxt/N
)
, ∀j, r, (106)

T j (3,4) = t

N

y+(j t/N)

1 + y+(j t/N)

[
y ′

+(j t/N) + O(τ ′
maxt/N)

]
, (107)

and T j (4,3) is given by the r.h.s. of (107) with y+ replaced by y−. The remainders
O(τ ′

maxt/N) are uniform in j and r . Relations (106), (107) show that for “slow variations” of
τ(t) the transition coefficient associated to a jump 3 ↔ 4 is small, proportional to τ ′(t)t/N ,
while no-jump transitions have weight one.

We write the sum over all paths in (44) as a sum over all paths with exactly k jumps,
where k = 0,1, . . . ,N − 1. (A jump happens if one value of rj changes to a different value
of rj+1). There are exactly four paths without any jumps, corresponding to �0(r, . . . , r), r =
1,2,3,4. The paths with a single jump are given by �0(r, . . . , r, r

′, . . . r ′), where (r, r ′) =
(3,4) or (r, r ′) = (4,3), and where the jump takes place at location k = 1, . . . ,N − 1. Note
that the only jumps allowed are between r = 3 and r = 4, since T j (r, r ′) = 0 if r 
= r ′ and
r, r ′ 
∈ {3,4} (see Proposition 3.2).

It is thus clear that we have exactly 2
(
N

k

)
paths with k jumps. The factor 2 takes into

account that r1 can take either of the values 3 or 4. For k fixed, the summand in (44) is
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bounded by

∣∣∣ei
∑N

j=1 tj εj (rj )
〈
B∗ψ0,�0(r1, . . . , rN)Aψref

〉∣∣∣ ≤ C0C
k
1C

N−k
2 , (108)

where

C0 = ‖B∗ψ0‖‖A‖,
C1 = max

j
max
r 
=r ′ |T j (r, r ′)| = O

(
τ ′

maxt/N
)
,

C2 = max
j

max
r

|T j (r, r)| = 1 + O
(
τ ′

maxt/N
)
.

The last estimates on C1 and C2 follow from (107) and (106), respectively. The sum over all
paths (N fixed) in (44) has the upper bound

2C0

N−1∑
k=0

(
N

k

)
Ck

1C
N−k
2 = 2C0

[
(C1 + C2)

N − CN
1

] ≤ 2C0
(
1 + 2Cτ ′

maxt/N
)N

,

where C is such that C1 ≤ Cτ ′
maxt/N and C2 ≤ 1 + Cτ ′

maxt/N . The limit as N → ∞ of the
r.h.s. 2C0e2Cτ ′

maxt . This implies that we can truncate in a controlled way the series over the
number of jumps obtained in the continuous time limit. If we truncate at k ≤ K , then the
remaining tail of the series is estimated from above by

2C0

N∑
k=K+1

(
N

k

)
Ck

1C
N−k
2 ≤ 2C0(C1/C2)

K+1e2Cτ ′
maxt = O

(
(τ ′

maxt)
K+1 e2Cτ ′

maxt
)
.

For bounded t , the tail of the series is thus O((τ ′
max)

K+1).

Contribution of Paths without Jumps The products of transition coefficients for the con-
stant paths with rj = 1,2 are 1. Also,

T 1(3,3) · · ·T N−1(3,3) =
N−1∏
j=1

[
1 + y+(j t/N)

1 + y+(j t/N)2

(
y+((j + 1)t/N) − y+(j t/N)

)]

(109)

and for r = 4 the product is given by the r.h.s. of (109) with y+ replaced by y−. By taking
the logarithm of (109) the product transforms into a Riemann sum, and so one easily obtains

lim
N→∞

T 1(3,3) · · ·T N−1(3,3) = exp

{∫ t

0

y+(s)y ′+(s)

1 + y+(s)2
ds

}
=

√
1 + y+(t)2

1 + y+(0)2
.

The limit of the products with r = 4 is given by the latter square root with y+ replaced
by y−. Finally, the limits of the exponential factors in (44) are

lim
N→∞

ei
∑N

j=1 tj εj (rj ) = ei
∫ t

0 ε(s,rj )ds , (110)

where ε(s, r) is defined as in (102). This gives the first line in (26).
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Contribution of Paths with one Jump Let j0 ∈ {1, . . . ,N − 1} be the location of the jump.
We have r1 = · · · = rj0 = r and rj0+1 = · · · = rN−1 = r ′, where either (r, r ′) = (3,4) or
(r, r ′) = (4,3). We treat the first the transition 3 → 4. The contribution to the sum in (44) is
given by 〈

B∗ψ0, J1|η(0,3)〉〈̃η(t,4)|Aψref

〉
, (111)

where

J1 =
N−1∑
j0=1

ei t
N

∑j0
j=1 εj (3)+i t

N

∑N
j=j0+1 εj (4)

⎡
⎣

j0−1∏
j=1

T j (3,3)

⎤
⎦T j0(3,4)

⎡
⎣ N−1∏

j=j0+1

T j (4,4)

⎤
⎦ . (112)

The continuous time limit of J1 is

∫ t

0
ei

∫ s
0 ε(s′,3)ds′+i

∫ t
s ε(s′,4)ds′

w(0, s,3)
y+(s)y ′−(s)

1 + y+(s)2
w(s, t,4), (113)

with w defined in (104). The corresponding quantity for the transition 4 → 3 is obtained
from (113) by interchanging the indices 3 ↔ 4, replacing y+ by y− and y ′− by y ′+. This
completes the proof of Theorem 3.4. �

3.2 Regime of Isolated Resonances

In the regime of isolated resonances we can use Theorem 2.1. All that remains is to calculate
the eigenvalues δj and eigenvectors ηj and η̃j of the level shift operator (74).

Theorem 3.5 (Resonances) Suppose all gaps �j are numbers, well separated from 0, inde-
pendent of λ. The resonances are

εj (1) = 0, εj (2) = λ2
j δ

j (2) + O(λ4
j ), (114)

εj (3) = �j + λ2
j δ

j (3) + O(λ4
j ), εj (4) = −�j + λ2

j δ
j (4) + O(λ4

j ), (115)

where,

δj (2) = iπγ (�j ), (116)

δj (3) = iπγ (�j )

2
− 1

2

〈
P
(

1

r2 − 1

)
, γ (r�j )

〉
, (117)

δj (4) = iπγ (�j )

2
+ 1

2

〈
P
(

1

r2 − 1

)
, γ (r�j )

〉
, (118)

γ (r) =
√|r|

2

∫
S2

dσ |g(
√|r|, σ )|2, (119)

〈
P
(

1

r2 − 1

)
, γ (r�j )

〉
= lim

ε→0

∫ ∞

−∞

1 − χ(−ε,ε)(r
2 − 1)

r2 − 1
γ (r�j )dr (120)

and the eigenvectors are

ηj (1) = ϕ++ + ϕ−−, η̃j (1) = 1

e−β�j + 1
[e−β�j

ϕ++ + ϕ−−], (121)
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ηj (2) = ϕ++ − ϕ−−, η̃j (2) = 1

e−β�j + 1
[ϕ++ − e−β�j

ϕ−−], (122)

ηj (3) = η̃j (3) = ϕ+−, ηj (4) = η̃j (4) = ϕ−+. (123)

The transition coefficients are T j (r, r ′) = 〈̃ηj (r), ηj+1(r ′)〉, which equal

T j (1,1) = T j (2,2) = T j (3,3) = T j (4,4) = 1, (124)

T j (1,2) = sinh(β[�j+1 − �j ]/2)

2 cosh(β�j/2) cosh(β�j+1/2)
. (125)

All other transition coefficients vanish.

Remarks 1. If we consider the asymptotic regime where �j � 1, we obtain εj (1) = 0,
εj (2) = 2iσ , εj (3) = �j + iσ , εj (4) = −�j + iσ . (To see this, note that 〈 1

r2−1
, γ (r�j )〉 =

O((�j )2) in this regime.) This agrees with Theorem 3.1 if one takes τ j → ∞, which sig-
nifies λ2 � �j � 1. The biggest change is the change to τ j , which previously was just
�j/σ j . Now we have

σ(�j )τ (�j ) = �j − lim
ε↓0

∫ ∞

0

1 − χ(−ε,ε)(r
2 − 1)

r2 − 1
γ (r�j )dr. (126)

The principal value integral appearing in (126) vanishes in the limit �j → 0, and is therefore
part of the remainder in the setting of Theorem 3.1.

2. Clearly the full analysis of the overlapping region is more involved than taking the limit
of the answers from the non-overlapping region. For instance, the limit above does not give
the correct answer for the eigenvectors, and hence nalso for the transmission coefficients.

3. Once Theorem 3.5 is proved, the calculations leading to (29) and (30) for the single
sudden crossing are done exactly in analogy to Sect. 3.1.1, and in fact are easier.

Proof We have to calculate, and diagonalize the level shift operator (74). For this purpose
we will take j to be fixed, in order to prove (114)–(123). (The calculation of the transition
coefficients follows trivially from these, using the definition (87).) We will consider the gap
�j to be positive. Then I = V − JR�

1/2
R V �

−1/2
R JR. Using (147), (148) and (150), we see

that

I = σx ⊗ 1S ⊗ φ(τβg) − 1S ⊗ σx ⊗ [
a∗(τβg)(−1)N + (−1)Na(e−βuτβg)

]
(127)

and the level shift operator at energy e is

�(e) = PeI P̄e(LR + LS − e + i0)−1P̄eIPe, (128)

with LS = �
2 (σz ⊗1S −1S ⊗σz)⊗1R and LR = 1S ⊗1S ⊗d�(u). Also P0 is the projection

onto the span of {ϕ++ ⊗ �,ϕ−− ⊗ �}. So, in this basis

�(0) =
[

�11(0) �12(0)

�21(0) �22(0)

]
, (129)

where

2�11(0) = 〈
τβg, (u − � + i0)−1τβg

〉+ 〈
e−βuτβg, (u + � + i0)−1τβg

〉
, (130)
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2�22(0) = 〈
τβg, (u + � + i0)−1τβg

〉+ 〈
e−βuτβg, (u − � + i0)−1τβg

〉
, (131)

−2�21(0) = 〈
e−βuτβg, (u − � + i0)−1τβg

〉+ 〈
τβg, (u + � + i0)−1τβg

〉
, (132)

−2�12(0) = 〈
e−βuτβg, (u + � + i0)−1τβg

〉+ 〈
τβg, (u − � + i0)−1τβg

〉
, (133)

where the inner products are in L2(R × S2,dudσ). Noting that e−βu|[τβg](u,σ )|2 =
|[τβg](−u,σ )|2, we see that

�11(0) = −�12 = i
〈
τβg, Im[(u − � + i0)−1]τβg

〉
, (134)

�22(0) = −�21 = i
〈
τβg, Im[(u + � + i0)−1]τβg

〉
. (135)

But now we use the well-known formula that limε↓0 Im[(u−u0 + iε)−1] = −πδ(u−u0), as
a distribution to obtain

�(0) = −iπ
∫

S2

[ |τβg(�,σ)|2 −|τβg(�,σ)|2
−|τβg(−�,σ)|2 |τβg(−�,σ)|2

]
dσ

= − iπγ (�)

e−β� + 1

[
1 −1

−e−β� e−β�

]
. (136)

It is easy to see that the eigenvalues are δ(1) = 0 and δ(2) from (116), with eigenvectors
η(1), η(2), η̃(1) and η̃(2) from (121) and (122).

For e = ±� there is only one eigenvector, each. Let us consider e = � whose eigenvector
(left and right) is ϕ+−. In this case the action of σx ⊗1S and 1S ⊗ σx both serve to map ϕ+−
to eigenvectors of LS with eigenvalue 0. On the other hand, e = � appears in the resolvent.
So

2�(�) = 〈
τβg, (u − � + i0)−1τβg

〉+ 〈
e−βuτβg, (u − � + i0)−1τβg

〉
= 〈

τβg,
[
(u − � + i0)−1 + (−u − � + i0)−1

]
τβg

〉
. (137)

(We again used e−βu|[τβg](u,σ )|2 = |[τβg](−u,σ )|2.) Now we use the well-known for-
mula that limε↓0(u − u0 + iε)−1 = −iπδ(u − u0) + P( 1

u−u0
), where P( 1

u−u0
) is the Cauchy

principle value distribution, P( 1
u−u0

) = limε→0
χ|u−u0 |>ε

u−u0
, where the limit is in the space of

distributions. So in this case we do get a “Lamb shift” in addition to the purely imaginary
resonance

2�(�) = 〈
τβg, [−iπ [δ(u − �) + δ(u + �)] + P(u − �) − P(u + �)]τβg

〉
. (138)

Consideration of this formula leads to (117), and (118) then follows by symmetry arguments.
We can treat the case of negative gaps �j by conjugating by σx to change to −�j . This

does not affect the resonances but it does affect the eigenvectors. However, all that happens
is that some vectors ηj (r) are multiplied by −1 and this is always accompanied by the same
change to the corresponding dual eigenvector η̃j (r). This type of gauge transformation does
not affect any physical quantities. �
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Appendix A: Araki-Wyss Representation

A.1 The Representation

Here we will outline the Araki-Wyss representation [5] in order to be self-contained. We use
similar notation to [10] (starting on page 24). The Araki-Wyss representation of the CAR
is a representation on the tensor product of two fermionic Fock spaces F (L2(R3, d3k)) ⊗
F (L2(R3, d3k)), such that the smoothed-out creation operators are represented by the for-
mula

a∗
β(g) = a∗

(
1√

e−β|k|2 + 1
g

)
⊗ 1 + (−1)N ⊗ a

(
1√

eβ|k|2 + 1
ḡ

)
, (139)

where N is the number operator N = d�(1). The annihilation operators are aβ(g) =
[a∗

β(g)]∗. Let us write μβ = (1 + e−β|k|2)−1. In this context, the modular operator and mod-
ular conjugation combine to give

ãβ(g) = JR�
1/2
R aβ(g)�

−1/2
R JR

= a∗
(

eβ|k|2/2√
eβ|k|2 + 1

g

)
(−1)N ⊗ (−1)N + 1 ⊗ (−1)Na

(
eβ|k|2/2√

e−β|k|2 + 1
ḡ

)
,(140)

and

ã∗
β(g) = JR�

1/2
R a∗

β(g)�
−1/2
R JR

= (−1)Na

(
e−β|k|2/2√
eβ|k|2 + 1

g

)
⊗ (−1)N + 1 ⊗ a∗

(
e−β|k|2/2√
e−β|k|2 + 1

ḡ

)
(−1)N . (141)

A.2 Regularity of Form Factors

Let g ∈ L2(R+ × S2, |k|2d|k|dσ) be a form factor represented in spherical coordinates
(dσ being the uniform measure on S2). We introduce a new radial coordinate r = |k|2 so
that the dispersion relation of the Fermions reads ω = |k|2 = r , i.e., HR = d�(r) on the Fock
space F (L2(R+ × S2,

√
r

2 drdσ)) (see (4)). The Araki-Wyss representation Hilbert space as-
sociated to the thermal equilibrium is

F
(

L2

(
R+ × S2,

√
r

2
drdσ

))
⊗ F

(
L2

(
R+ × S2,

√
r

2
drdσ

))
. (142)

For the purpose of spectral deformation, it is advantageous to use the maps

a#(f ) ⊗ 1 
→ a#(f ⊕ 0), (−1)N ⊗ a#(f ) 
→ a#(0 ⊕ f ) (143)

to define an isometric isomorphism between (142) and the Hilbert space

F
(

L2

(
R+ × S2,

√
r

2
drdσ

)
⊕ L2

(
R+ × S2,

√
r

2
drdσ

))
. (144)

In (143), N is the number operator. A further isometric isomorphism between (144) and

HR = F
(
L2(R × S2,dudσ)

)
(145)
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(see also (32)) is induced by such an isomorphism between the one-particle spaces, given by

f ⊕ g 
→ h, h(u,σ ) = |u|1/4

√
2

{
f (u,σ ) if u ≥ 0,

g(−u,σ ) if u < 0,
(146)

where f,g ∈ L2(R+ × S2,
√

r

2 drdσ) and h ∈ L2(R × S2,dudσ).
Under these isomorphisms, the field operator φ(g), in the Araki-Wyss representation,

has the expression

φβ(g) = φ(τβg), (147)

where φ on the r.h.s. is the field operator on the fermionic Fock space (144), and where

[τβg](u,σ ) = 1√
2

√
|u|1/2

e−βu + 1

{
g(

√
u,σ ), if u ≥ 0,

g(
√−u,σ ), if u < 0.

(148)

Using the explicit transformations introduced above, the expressions (37)–(41) are easily
found. Furthermore, it is not hard to analyze the explicit action of the deformation transfor-
mation Uθ (see before (50)). For instance, for h ∈ L2(R × S2,dudσ) and θ ∈ R, we have

Uθφ(h)U ∗
θ = φ(eθ∂uh), (149)

where (eθ∂uh)(u,σ ) = h(u + θ, σ ). One can now combine (149) with h = τβgj (see (147),
(148)) and check that due to Condition (R) in Sect. 1 (with α(u) = 1), θ 
→ Uθφ(h)U ∗

θ

admits an analytic continuation into a strip |Im θ | < θ0. One can proceed similarly to check
analyticity of (V j )(θ) by using the explicit form �R = e−βLR for the modular operator of R.
For reference in the body of the paper, let us note explicitly that

JR�
1/2
R φβ(g)JR�

1/2
R = a∗(τβg)(−1)N + (−1)Na(e−βuτβg), (150)

in this representation F (L2(R × S2,dudσ)). This can also be seen by comparing to (140)
and (141).
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